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Abstract and Summary

Deep precision strike is a generic military operation that depends
importantly on C4/ISR system contributions. Information from the
latter is realistically subject to chance influences: targets are found and
correctly identified generally at rates proportional to their numbers,
locations, and activities, and to the coverage of shooter-serving
sensors; the events of detection are realistically random, as are the
delays, results, outcomes, and follow-up of the targeting shooters. In
this paper a simplified version of the above complicated process is
analyzed mathematically, here as a multi-stage queuing process with
imperfect service. The probabilistic outcomes can be used to anticipate
the results of higher-resolution simulations; these often are far more
time consuming both to set up and run. '

Aspects of the above queuing situations can also be deduced via a
deterministic “fluid” queuing approximation that gives an adequate
and convenient representation of aspects of the state variables and
various Measures of Effectiveness in the stochastic queuing model.
Relying on that agreement, we have elsewhere generalized the
stochastic queuing model setup to fluid models that incorporate
omitted realities, such as losses from target-list tracking, and the
inevitable time dependencies, non-stationarities, and adaptive
behaviors that typically occur in actual military operations or
vignettes. Both the stochastic and deterministic model results are
informative and produce reasonable insights. Further validation steps
using mathematical probability techniques as well as simulation are
planned; some are in progress.

» It is ironic, but of interest and potential value, that strong
abstract correspondence exists between the deep, precision strike
situation described and for which our models have been formulated,
and certain disaster relief scenarios. In these, the deep-strike targets
are identified as disaster victims (human, or infrastructure), the
C4/ISR sensor assets are discovery-medical diagnosis and triage
systems, and the deep-strike weaponry (“shooters”) is replaced by
suppliers of medical service. In both cases time sensitivity and
uncertainty exacerbate the decision problems. Force composition and
structure questions translate into very similar questions and issues
for these two important topics of modern military concern. This is an
argument for the cost-effectiveness of pursuing an abstract model
type that has a range of applications and provides broad insights.

it




0. Overview

Battle damage assessment (BDA) is an aspect of “hard” battlespace
information war (IW)/information operations (IO) that promises to add to the
efficiency of combat engagements. In spite of the precision of modern weaponry
and sensor/communication system, shots fired at targets will occasionally miss
(or cause only partial damage). Consequently a sequence of several shots may be
directed at a particular (hostile) target to increase the probability of kill. This
paper examines the efficacy of a shooting strategy that depends upon
information: that of shoot-look-shoot.

In the shoot-look-shoot tactic the targeter (Blue) fires once at an acquired
target (Red). He then ”iooks” at it and classifies it as alive or dead: if the target is
classified as alive, he shoots at it only once more. An acquired target is never shot
at more than twice on a particular occasion. A target that has been shot at twice
must be reacquired to be classified as being alive or dead; that is, a (hostile)
target that survives two shots must be reacquired to receive more shots; in the
meantime it can itself launch weapons, or advance to pursue an advantage.

An effective BDA capacity can greatly reduce the opponent’s options and
effectiveness by increasing the chance that a targeting mission is successful and
that this fact is known to the targeter. On the other hand, seriously error-prone
BDA tends to clog target lists with unprbfitable already-dead “targets” that
vastly hamper the shooter's response time, hence kill rate, and wastefully inflate
the expenditure of missile inventory.

Section 1 describes and presents results for a stochastic queuing network
model of the situation described. The queuing network model allows closed-form
calculation of long-run distributional results that are easily turned into numbers

and graphs without the need for Monte Carlo simulation. It is almost always




difficult to obtain mathematically neat closed-form time-dependent results for such
a queuing model; simulation or numerical calculations are required. Section 2
presents a deterministic or expected-value approximation to finite server queues
of the type above. Sections 3 and 4 present deterministic approximations to the
network queuing model of Section 1; the agreement with the mean values of the
stochastic model tends to be very satisfactory, but no information on state
fluctuations or risk is available from such models.

Papers that discuss similar problems and contain further references are
Almeida, Gaver, and Jacobs (1995), and Gaver and Jacobs (1987); see also Evans

(1996), Aviv and Kress (to appear) and Manor and Kress (to appear).

1. An Aggregated Queuing Model of Defensive Targeting when Service
Success is Assessed with Error, and the Shooting Protocol is Shoot-
Look-Shoot

1.1 The Model
Suppose attackers that are targets for a defensive force appear in region ® at

a constant Poisson rate A. The time until an unacquired target that is not itself

firing is detected by a surveillance system is distributed exponentially with mean

1/& A live target thai is detected is classified as live and put on the shooter

servers’ targeting list with probability Rz, With probability (1 — Rgg), it is

misclassified as dead and returns to the unacquired state. A dead target that has
not yet been classified as dead is classified as dead when it is acquired with
probability Rgg and is removed from the system; with probability (1 — Rzg) it is
classified as live, and is erroneously and wastefully put on the targeting list.

The times between shots by a live Red pbtential target, such as a TEL (e.g.

SCUD or anti-air missile launcher) are independent identically distributed




exponential (Markovian) with mean 1/¢a. An unacquired firing target is detected
and put on the shooter s targeting list with probability p4 after it fires.

A detected target that has been classified as targetable (perhaps
inappropriately because dead) is viewed as queued and awaiting attention of one
of s(s=1,2,...) shooters/”servers”; these can be thought of as missile launchers.
Service times for a shooter can be viewed as realizations of a random variable
that includes, implicitly, time for the target waiting in the detected queue
(residing on the target list), conveyed by C4ISR, to be converted to tracking-firing
information; it also includes time of flight in this model.

We assume a shooter server uses a shoot-look-shoot protocol. A shot kills a
target with probability px. A (possibly erroneous) battle damage assessment
occurs immediately after the first shot. If the first shot kills the target then, with
probability Cgg4, the target is'correctly classified as dead and is appropriately
ignored from then on; with probability (1 — Czz) the target is incorrectly classified
as live and it is shot at once again. If the first shot misses the target, then with the
probability Cg, the target is classified as live and the target is shot at a second
time; with probability (1 — Cy,) the target is misclassified as dead and returns to
an unacquired state. No battle damage assessment occurs after the second shot;
the shooter immediately moves to the next enqueued targetable unit. Once a

dead target is classified as dead it is taken out of the system.

1.2 Number of Times a Target is Shot At
In this section we obtain expressions for the expected number of times a

target is shot at with variations in the way the implied question is phrased.




1.2.1 Number of times a target that starts as unacquired is shot at while it is
alive: Sa4

HSaal= Ik + 21-pi)Carpic +(1-px)Caall-picf2+ ElSaa]

Istshot  1st shot misses the
kills the  target; the target is
target  correctly classified;
the 2nd shot kills
the target

+(1 ~PK )(1 ~Caa )[1 + E[SAA ]]

Solving,

E[SAA] _ bkt 2(1 - pK)Caa + (1 - pK)(l - Caa) _ 1 (1.2.1)

C1-(1-px)Caa(1-px)-(1-Pk)1-Cas)  Px’

Note that E[S44] depends only on pg, despite the uncertainties of perception
(Caq < 1); also, the result does not depend on Cyy or Cg; =1 - Cys. The BDA

process has no influence on this particular measure.

1.2.2 Number of times a dead target that starts as unacquired is shot at until it is
classified as dead: Sp .

E[Sp]= Rag 0+ (1~ Rgq) [ ICaa + (1-Ca) [2+E[5D]]]

[ .
probthe  prob the shooter shooter
sensor sensor  takesone misclassifies
correctly incorrectly ~shotand  target after
classifies  classifies ~ correctly 1st shot
the dead  the dead classifies
target target target

Solving

= (1= Rga)[1+(1-Ca)]
1-(1-Ryg)(1-Cag)

Note that this does not depend on the true kill probability, pk, neither does it

E[Sp (1.2.2)

depend on Cgg.




1.2.3 Number of times a live target that starts as unacquired is shot at until it is
killed and classified as killed: S4p

E[Sap]= pxCa + [ (-pe)Cupx + pr(1-Cas) J[2+Esp]]
prob target prob target is killed prob killed
1s killed on on 2nd shot on 1st shot and
1st shot and misclassified so
classified shot at 2nd time
as dead
2
+ (1= pr)(1=Coa)[1+ E[Sap]]+ (1-pk)"Car [2+E[Sap]]
\ ~- o ;—-——w———’
prob 1st shot prob 1st shot
misses and target misses, target
misclassifie correctly classified
as dead as live and 2nd

shot also misses
Solving
E[Sap]=
PxCaa + [(1 = Pk )CaaPK j‘PK(l ~Caa)|[2+ E[Sp]] + (1~ px (1 - Caa) +2(1 - px)*Caa
1-[(1- PRI~ Ca) + (1- ) Cad]

=L ESp]+ Pk[Rag —Caa)

P [1 —[(1 ~ P )(1-Caa) + (1 “PK)ZCaaH [1-(1-Ryg)(1-Caa)]

_ 1 He 1, pk[Raa ~Cad] |
Crx Hp] [1-(1- px )1~ PxCag]] [1- (1= Raa)(1- Cya)]

_1 +[(1 Caa )1+ (1= Rag)]+ (1= px)Caa(1 = Rag)[1+ (1= Caa)]
Pk [1+ (1~ pk)Cad) [1 (1~Rgg)(1~Cqa)]

(1.2.3)

Note that changes in the values of Rz and Cg4g most strongly influence E[Sap]
through E[Sp]. If C44 = R4, then E[S4p] is independent of Cg,. It is clear that the
capability to correctly identify dead targets as dead is of great importance to
minimize wasted shots, and (1.2.3) quantifies this dramatically: for small Cgg =

Rj4, the above reduces to E[Sapl=1/px + 1/Cqa.




1.2.4 Number of times a live target that starts as unacquired is shot at while it is
dead: Spp

E[Spp]=E[Sap]- E[Sa4]
=1/Cyy if Cj; is small.

(1.24)

1.3. Number of Times a Target Passes Through the Surveillance System
In this section we obtain expressions for the expected number of times a

target passes through the surveillance system.

1.3.1 Number of times a dead target that starts as unacquired passes through the
surveillance server until it is classified as dead: Lp

E[Lp]= 1Ry +i(1-Rg) Cag +(1-Rya)(1-Caa)1+E[Lp]]

sensor shooter
correctly correctly
classifies classifies
dead target after
target 1st shot
Solving
1
E[Lp]=
1-(1-Ryg)(1-Cyg) .
i . 3.
(Rag +Cuaa)

if Rgg and Cgq are small. This indicates the extra load imposed by futilely
processing dead targets.
1.3.2 Number of times a live target that starts as unacquired passes through the
surveillance server until it is killed and classified as dead: Lap
Let LAp be the number of times an unacquired live target passes through the

surveillance server until it is killed and classified as dead.




ELap]= é_fo—c (1-Ry) [1 + E[LAD]]
prob live p;gfglg )

target  misclassified

detected by sensor
by sensor

§+a{R [+ Gy xO+pxli- Caa)E[Lp]]

rob target
ki’led on 1st shot
and correctly
classified

+Rg[1+ (1-px) (1-Cy) E[Lap]

H——J
prob target vrob target
not killed mcorrect(l;/
on Ist shot classifie

+H1-px )CaaPkE[Lp ]+ (1= px )Cpa(1- PK)E[LAD]]}

o
m ( “PA) [1+E[LAD]]
prob shooting

prob live tar, fet target is not put

is detecte on targeting list
because it shoots geting

-+

+;%EPA {1 +0pkCag +Px(1-Cyq)E[Lp]+(1-px) (1-Caa)E[Lap]

+{1=pi)CaaPElLp ]+ (1~ Pi)Caa(1 - P E[Lap]}
Solving,
E[Lsap]=
1+ (g5 Raa + 2574 [P~ Can)ElLp ] + (1= pi)CarpicEl L ]
1- {[gfa (1= Rea) + 725 (1~ VA)} [éfa Ru+ g pA}[( = Px)(1~Caa) +(1-px )ZC‘”‘]} (1.3.2)
_ 1+ ( gfa Ry +¢% PA)E[LD I [(1-Cag) + (1 - Pk )Cog]

[?%Raa .ga—pA}pK[l%-Caa(l"pK)]




Small changes in Ry and pg, wien they are small, can greatly affect E[L4p].
Small changes in Cg7 and Ry can also greatly affect E[L4p] through E[Lp].

1.3.3 Number of times a live target is acquired before it is killed: Lsa

FlLan]= 14 {1 Raa)EIL A+ R (1~ pi 1= Caa) +(1- pi ) Can L a4

+ﬁa{(l—PA)E[LAA] +PA[(1 =P )1=Caa) +(1-px )2C““]E[LAA]}

Solving
E[Laa]=

1

o

[1_{__5___(1_%)?1;(1_,“){5_&1{@ +"§—%&PA}[(1—pK)(l—Cm)‘*'(]"PK)sz]}:l

E+a

1

1-{[.6.55(1—Rm)+gf—;(1—pfx)]+[ Fog Rt o PA](l-PK)[l-PKCm]H (1.3.3)

1

3

[ $+a

Ra + éfaPAijK[l‘*‘Caa(l_PK)]

Note that small changes in Ry, and p4 when they are small can result in non-
linearly large changes in E[L z4].

We now discuss the queuing model.

1.4 Mathematical Details of the Queuing Model

Important operationally relevant questions about the system can be
addressed in terms of a queuing model. The targets are customers. They are
either unacquired or queued and awaiting attention of one of s (s=1,2,...)

shooters/”servers”.




1.4.1 The shooting server

We will say a target is of type (s, bs) if it requires ag shots while it is alive and
an additional bg shots to classify the dead target as dead. The type of each target
is independent of the types of other targets. The expected number of shots
required by a target that has arrived to the region is E[S4p]. The total arrival rate
of targets to the shooter service system including those that are retargeted is
AE[SAD].

Assume the target list queue for the shooters evolves as follows (cf. Kelly
[1979]):

a) Each customer (target) requires an amount of service which is a random
variable exponentially .distributed with unit mean.

b) A total service (shooting) effort is supplied at the rate

o(n) = umin(s, n)
when there are 7 targets waiting or being served.
c) A proportion H¢, n) of this effort is directed to the customer (target) in

position £ in the queue ({ =1, 2, ..., n) where

-1— £=1,2,..,n, n=12,..,s
n
}'(Z,n)=<1 £=1,2,...,5, n=s+1,5+2,... (1.4.1)
s
0 otherwise

(
d) When a customer arrives at the queue he moves into position ¢ with

probability

1 {=n+1

y(Ln+1)= (1.4.2)
0 otherwise




when there are n targeis waiting or being served.

The shooter service system behaves as an M/M/s queue with mean service
time 1/u.

Let Xs(f) be the number of targets waiting for service or being served by the
shooter service system at time ¢. Corollary 3.4 of Kelly [1979] implies that if Ag=

AE[SAD] < us, then a limiting distribution exists.

lim P{Xs(t)= n} = 75(n)

with

( n

(.’1&) 1 7s(0) forn=0,1,...,s

u )
mg(n) =1 (1.4.3)
NS n-—s
As) 1 2s 75(0) forn=s+1,5s+2,...

\ K stisu

with

-1
(=] S [A) 1 1@}5_1.__1__
S84 ]

If As > su then the effective arrival rate of targets is at least as large as the
maximum service rate and tlim P{Xs(t) = n} =0 forn=0,1,.... The servers are
saturated and the populatior_l_> of unserved targets increases linearly beyond all
bounds. Henceforth, assume Ag < us.

The long-run mean number of targets waiting for shooter service or being

served is

E[Xs()|= ’L—S + ns(O)(%s’) 5 [1—_?—5—5/—/%)—]5 (1.4.4)

10




The long-run mean queue length at the shooter is

E[Qs] =7rg (0)-;‘—'(-1—5] -[__%//;:S;-ﬁz— . (1.4.5)
—\As

Both of these expressions reveal the substantial nonlinearity of shooter backlog,
hence delay: if arrival rate of targets, A, were to increase, backlog skyrockets; but
a similar and synergistic effect occurs if E[Sap] is high because of incorrect
classification. The model guantifies the possibly substantial effect of improving
classification capability on overall targeting performance and can be used to
study the tradeoff between good classification and traffic handling capability.
It follows from Theorem 3.1 of Kelly [1979] that the long-run mean number of
live targets waiting for or receiving service by the shooter is
E[X ()] ElSaa]. (1.4.6)
E[Sap]

The mean number of shooter/servers that are busy is

7“//-1 As 1 |
Zk s.[ u) % | (1.4.7)
SH

The mean number of shooter/servers that are serving live targets is

E[S4]=E[S] gzjg] : (1.4.8)

erred

The long-run mean rate at which live targets are killed is

Pk =E[Sa]upk-
We will model the surveillance system similarly but as behaving as an infinite

server queue with mean service time 1/(£ + &), where « is the rate at which

11




targetable opponents reveal themselves by taking offensive action, e.g. shooting
SCUDs.

The long-run mean number of undetected targets (both live and dead) is

E[XL(oo)] = AE[Lap] E%E (1.49)

The long-run mean number of live undetected targets is

1 ELga] , 1
E+a E[Lyp] E+a

From Little’s formula, the mean time it takes to kill a target and classify it as

dead is

AE[Lap]

E[Laa] (1.4.10)

W= %[E[XL (o=)]+ E[X5()]]. (1.4.11)

The mean time it takes to kill a target is

Wy =E[Lg4] : i o g{;ﬁg%E[Xs(”)]

The mean number of offensive shots (SCUDs launched) by a Red target is
aWa. All of the above expressions can easily be numerically tabulated; see below.
Numerical Examples

In the numerical examples, the arrival rate of targets to the area is 15/hr; the
rate of target detection by the sensors is £ = (1/2)/hr; the raté of firing by a Red
o = (1/2)/hr; the service rate by a Blue server = 3 per hour; there are 20 Blue
servers; the pg = 0.5. This is an entirely hypothetical set of numbers and is offered
only as a very roughly plausible illustration.

Figure 1.1 presents the average time to kill a Red as a function of pg4, the
probability that a firing Red is put on the targeting list. Increasing p4 from 0.1 to

0.8 reduced the average time to kill a target from over 2 hours to about 1 hour.

12




The average time to classify a dead target as dead is about an hour. The other
classification probabilities are Rg; = 0.5, Rgg = 0.7, Cgg = 0.5, C44 = 0.5.

Figure 1.2 presents the average rate of Red shots per hour as a function of p4.
Increasing p4 from 0.1 to 0.5 reduces the Red shots per hour from about 45 to 30;
further increases in p4 are less influential unless, say, shooting rate and/or kill
probability are increased.

Figure 1.3 displays the mean number of shots fired by a Red target as a
function of p4 for 2 different values of sensor acquisition rate, £, one “low” ¢ =
0.5/hr and one “high” & = 2/hr. Note that if the sensor acquisition rate is high,
then the value of pA has little effect.

Figure 1.4 displays the mean number of Blue shots to kill a Red target and the
mean number of Blue &shots to kill a Red target and classify it as dead as a
function of C44. Since pj( = 0.5, the mean number of shots to actually kill a Red
térget is 2. However, the mean number of additional Blue shots expended until a
dead Red target is classified as dead can be close to 2 for small Cg44 (it could
approach e if Rgq weré also small) but is negligible for Cj7 ~ 1. Ability to classify
well is seen to be extremely influential on shooter system efficiency.

Figure 1.5 di;plays the traffic intensity at the shooting service system as Cgy4
varies. A traffic intensity larger than 1 means that the service system is unstable
and won'’t be able to handle the work load presented to it. With other parameters
fixed as shown, the value of Cgg must be close to 0.3 or greater in order for the
queue to be stable, i.e.' not to eventually grow beyond bounds. Even if Cgg = 0.3
the mean number of targets (both live and dead) waiting or being served at the
service system will be unacceptably high; the queue, and delay, can be brought
down quickly and substantially by increasing C44. This step also cuts into Red

effectiveness.
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Figure 1.6 displays the limiting distribution of the number of targets waiting
for or being served by the shooter-servers (1.4.3). The model parameters are 1 =
15,8=2, a=0.5,Rg = 0.5, Rgg = 0.6, Cgy = 0.5, pao = 0.5, px = 0.5, £ = 5, s = 10. The
upper graph displays zs(n), n =0, 1, ... where Cg4 = 0.3. The lower graph
displays zs(n), n=0, 1, where Cjg = 0.8. Table 1.1 displays the mean and
variance of the number of targets waiting for or being served by the shooter-

servers.

Table 1.1
Moments for Limiting Distribution of the Number of
Targets Waiting or Being Served
A=15,=2,a=0.5 Ry =0.5 Rii=0.6,Caq=0.5p4 =05 px =05 4=55s=10

Cad Mean Variance
0.1 — —
0.2 — —
03 62.3 3543.0
0.4 16.9 132.3
0.5 11.8 439
0.6 9.6 23.3
0.7 74 154
0.8 7.6 115
0.9 7.0 9.3
1.0 6.4 79

— Queueis saturated

The poorer the ability to classify a dead target as dead, (lower Cjy), the
greater the variability in the number of targets waiting or being served by the
shooter servers. The graph of the limiting distribution with Cgz4 = 0.3 indicates
that the distribution has a very long and heavy right hand tail; there is a sizable
probability that more than 100 targets are waiting for service or being served; the

heavy tail is reflected in the variance of the distribution which is 3543, compared
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with a mean of 62.3. In comparison, when Cg4 = 0.8, the tail of the limiting
distribution is much shortér; this shorter tail is reflected in a variance of 11.5

compared to a mean of 7.6.

2. A Fluid Approximation for the Number of Customers Waiting or
Being Served in an M/M/s Queue

Consider an M/M/s queue with Poisson arrivals having rate 4, independent
exponential service times with mean 1/y and s servers. Let N(#) be the number of
customers waiting or being served at time ¢. Assume 4 <sp

A deterministic approximation to {N(#), t = 0} is

) = 3 - N (H() @

H(f)= [1 + (‘éf‘)(ﬁ)smt)] : 2.2)

Letting t — oo in (2.1) results in

where

A
Ly=N(e)=—E . 23)
(%)

If s =1, 2, then N(e) is exactly.equal to L, the long run average number of
customers waiting or being served in a M/M/s queue. Figure 2.1 presents plots
of (L - L;)/L for the numbef of servers s =5, 10, 20 as a function of 1/ Note that
the approximation L, is always less than L Further the approximation becomes
less exact as the queues’ traffic intensity increases. The size of the error also
increases as the number of servers increases. For 10 servers the approximation is
at no more than 10% lower than the true. The approximation appears adequate

for moderate numbers of servers.
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The approximation with H(t) equal to (2.6) for s = 1 has been proposed by
Agnew (1976) and Rider (1976); see also Filipiak (1988).

3. A Deterministic Model for-Defensive Targeting When Service
Success is Unknown and Shooting Strategy is Shoot-Look-Shoot

In this section we present a deterministic or expected-value approximation to
the stochastic queuing network model of Section 1. While this deterministic
model supplies useful information about systematic process behavior (e.g. time
dependencies) it cannot reveal the form of the random variations in targets
queued for shooting, as in Table 1.1 and Figure 1.6. (Note that in Table 1.1 the
variance of queue length is approximately (mean queue length)? for large queue
length, descending to a variance of queue length nearly equal to the mean queue
length when the latter is small.)

Again suppose attackers that are targets for a defensive force appear in region
%, at a rate 1. The time until an unacquired target that is not itself firing is
detected by a surveillance system is distributed exponentially with mean 1/&. A
live target that is detected is classified as live and put on the shooter servers’ |
targeting list with probability R,;; with probability (1 - R,,) it is misclassified as
dead and returhs to the unacquired state. A dead target that has not yet been
classified as dead is cl«;assified as dead when it is acquired with probability Rg4
and is removed from the system; with probability (1 — Rgy) it is classified as live,
and is erroneously put on the targeting list.

The times between shots by a live target are independent identically
distributed exponential (Markovian) with mean 1/a. An unacquired firing target
is detected and put on the shooter’s targeting list with probability pa.

A detected target that has been classified as targetable (perhaps

inappropriately because dead) is viewed as queued and awaiting attention of one
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ofs(s=1,2,...) shooters/”servers”. Service time for a shooter can be viewed as a
random variable that includes, implicitly, time for target presence in the detected
queue, conveyed by C4ISR, to be converted to tracking-firing information; it also
includes time of flight in this mociel.

The shooter-server uses a shoot-look-shoot protocol. Parameters are the same
as before: a shot kills a target with probability px; BDA occurs immediately after
the first shot, so the first shot kills the target then with probability Cg; the target
is classified as dead and is ignored from then on; with probability (1 — C44) the
target is classified as live and it is shot at again. If the first shot misses the target,
then with the probability Cg, the target is classified as live and the target is shot
at a second time; with probability (1 — Cg,) the target is misclassified as dead and
returns to an unacquired state. No battle damage assessment occurs after the
second shot; the shooter immediately moves to the next enqueued targetable

unit. Once a dead target is classified as dead it is taken out of the system.

3.1 The Effective Arrival Rate of Targets to the Shooter-Server

Let Ay(A), (respectively Ay(D)), be the effective arrival rate of live
(respectively dead) targets to the undetected state. Let Ag(A), (respectively Ag(D)),
be the effective arrival rate of live (respectively dead) targets to the shooter-
server targeting list for a first shot. Let A1(A), (respectively 41(D)), be the effective
arrival rate of live (respectively dead) targeté put again on the targeting list for a
second shot.

The effective arrival rates satisfy the following equations.

Aa(A)= A+ 29(A)1-px)(1-Ca) + 1 (A)1-px)

(3.1.1a)

u(8) 51 R 221 )|
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o) = AuA) 7o R

21(4) = 29(A)(1- px)Caa
X1(D)= 241(A)pk +41(D)
A9(D)= Ay (D)[1-Ry]
21(D) = A9(D)1-Caa]+ A9(A)px[1-Cad]

= Agz(D)[1- RyzJ[1- Caa] + Ao(A)pi[1- Ca]
Note that

21 (D)= M1(A)pk + Ay (D)1= Rga][1~ Caq)+ p(A)pk[1-Caa]-

M(A)px +Ao(A)px(1-Cud]
- 1-[1-Ryy[1-Cyy]

Ry +
E+a “ E+a

1= (=P}t~ Can)~ (1~ Cua]

1"(1“pK)(1—Caa)_(1"pK)2Caa;

M1-pk)Cas .
1- (1_"pK)(1"Caa)_(1"PK)2Caa

(3.1.1b)

(3.1.10)

(3.1.1d)

(3.1.1e)

(3.1.1f)

(3.1.2)

(3.1.3)

(3.14)

(3.1.5)

(3.1.6)



Put

Ap =29(A)+ A1(A) + A9(D) + 41(D). (3.1.7)
3.2 A Deterministic Network Queuing Model Involving Shoot-Look-Shoot
Consider the following variables.
Ay(t) = number of undetected live targets at time ¢

Ap(t) = number of detected live targets that are on the shooter servers’
targeting list and are waiting for the first shot at time ¢

A1(?)
Dy(t)

number of detected live targets waiting for the second shot at time ¢

number of undetected dead targets that have not yet been classified
as dead at time ¢

Dy(t) = number of detected dead targets that have not yet been classified as
dead and are waiting for the first shot

D1(t) = number of detected dead targets that have not yet been classified as
dead and are waiting for the second shot

K,(t) = Number of Reds killed by time ¢
K(t) = Number of Reds killed by time ¢ which are classified as dead
R(t) = Number of Red shots by time ¢

B(t) = Number of Blue shots by time ¢

The variable Xg(#) in the stochastic model of Section 1 corresponds to Ap(t) +
A1(t) + Do(t) + D1(8).

Consider the following parameters.

A = Rate of arrival of Red attackers to region

1 = Rate at which acquired targets are served by a shooter-server
v = Rate at which acquired live targets are lost from track
a = Rate at which attackers are active

19




¢ = Rate at which a target is detected by the defender sensors

pk = Probability a live Red target is killed

Cas = Probability shooter classifies a live target as live after shooting
Cada = Probability shooter classifies a dead target as dead after shooting
Rgzs = Probability a live target is classified as live by a defender sensor
Rga = Probability a dead target is classified as dead by a defender sensor

pA = Probability an active shooting Red is acquired by the server

Let

s 1
H(t) =[’1+f‘g(%§] [Ao(t)+Al(t)+D0(t)+D1(t)]I ; (3.2.1)

H(t) is a term to approximate the behavior of an M/M/s queue (as described in
Section 2).
Consider the following deterministic model as an approximation to the

network of queues model (as described in Section 1).

A .
d ‘g(f) = &+ A+ A) —epadul)-  ERuAult)
arlf'lt‘gl re:;e rate of loss of active rate of rate of acquisition
ot targe Reds from track acquisition due to sensors
to area due to Red
activity (322&)

+  p1-pr)MOH(E)  + p(1-px)Ao(t)(1-Caa)H ()
active still alive after 2 shots  active Red alive after first shot

misclassified as dead
dAp(t ‘
200) - ap g Ay () + EReau (1) 1AG(HH() - vAo 1) (3:2:20)
dtzlt(t) _ #Ao(t)(l ~ 1k )Caz H(t) - uA(DH() -vAL() (3.22¢)
active Red alive after first shot,  rate at which Red

classified as alive - actives are shot at
: a second time

20




d t
DUl umpcHl) - @yl + DOH
active Red killed on rate at which rate at which

ond cpot dead Red not dead Red not yet
et classified as classified as dead
ead is acquired is shot at second time
by sensor

4Do(t) _ ¢(1-Ryz)Dy(t) = uDy(t)H(t)

at rate at which rate at which
dead Red not yet dead targets not
classified as dead classified as dead
is acquired by sensor are shot at
and classified as live '
dDy(t
dlt( ) ppx (1= Caa )Ao(t)H(t) +pDo(t)(1- Caq)H(t)— uDy()H()
rate at which a live Red is
killed on 1% shot but is
misclassified as live
dK, (¢
i) e (40(6)+ Ar(6)HCE)
dK(t
2KO) - iy CaaolHHE)+ EDu(t1Ras-+ HCaaDolH)
dR(t
7‘9 = oAy (t)+Ag(t) + A1(t))
dB(t
B0) y{ag(t)+ )+ Do)+ D))

3.3 Numerical Results

(3.2.2d)

(3.2.2e)

(3.2.26)

(3.2.2g)
(3.2.2h)
(3.2.21)

(3.2.2))

Consider a model with the following parameters: A =15, £ =2, @ = 0.5, Rgg =

0.5, R4 = 0.6, Cgq = 0.5, pa = 0.5, px = 0.5, £ = 5, s = 10. Table 3.1 displays the long
run average number of targets waiting or being served by the shooter-servers
and the long run average number of live targets waiting or being served by the
shooter-servers as a function of Cyg for the queuing network model of Section 1.

Also displayed are the values of the total number of targets waiting or being

served at the shooter servers, Ag(300) + A1(300) + Dg(300) + D1(300), as a function
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of Cg4 and the long run average number of live targets waiting or being served at

time 300, Ap(300) + A1(300), for the deterministic model. The deterministic model
was evaluated using the 4th/5th order Runge-Kutta-Fehlberg method as
implemented in MATL AB. The agreement is good where both models apply. The
deterministic model is able to (quickly) estimate the expected number of live

(opponent) targets at time ¢ (= 300, here) even when the sensor-shooter system is

saturated.
Table 3.1
Targets Waiting or Being Served by the Shooter Servers
Cad M/M/10 Deterministic M/M/10 Deterministic
Average Number of Average Number of
Number of Targets at Number of  Live Targets
Targets time 300 Live Targets at time 300
0.1 — 3687.0 — 2797.0
0.2 — 2279.0 — 1524.0
03 65.3 63.6 39.8 389
0.4 16.9 157 111 10.3
0.5 11.8 10.8 8.2 7.6
0.6 9.6 9.0 72 6.7
0.7 84 79 6.7 64
0.8 7.6 7.3 6.5 6.2
0.9 7.0 6.7 6.3 6.1
1.0 6.4 6.3 6.2 6.1

— queuing model is saturated

4. A Nonstationary Network Queuing Model Involving Shoot-Look-

Shoot

Letting A — 0 in the model of Subsections 3.1 and 3.2 will result in A = 0. The

function H of 3.2.1 will tend to 1 and the service process will be similar to an

infinite server queue.




Since it is important to model the transient behavior of the system under a

nonstationary arrival process of targets, we will modify the effective arrival rates

as follows:
%(Art.) = Au(t)[ERas +opa] (4.1a)
M(A1)=A9(A,)(1-Pk)Cas (4.1b)
A9(D,t)=Dy(t)é[1- Ry (4.1c)
21(D,t) = 29(D,)[1- Ca]+ A9(A, O)px[1- Caa)- (4.1d)

The effective arrival rate at the shooter server is

Ap(t)=A9(A, 1)+ A1(A, 1)+ A9(D,t) + A1(D, ). (4.2)
Put '

-1

H(t)= {1 7 ”(t) (AE t)) [Ao(t)+ Ay(t)+ Do(t) +Dy(t)] (4.3)

H(t) is a term to approximate the behavior of the M/M/s queue.
The deterministic model equations of Section 3 remain the same except for

replacing A by (possibly) A(t) and using H(#) of (4.3).

4.1 Numerical Results

Consider a model with the following parameters: A =15, £ =2, @ =0.5, Ryg =
0.5,R44 = 0.6, Cgg = 0.5, p4 = 0.5, px = 0.5, u = 5, 5 = 10. Table 4.1 displays the long
run average number of targets waiting or being served by the shooter-servers
and the long run average number of live targets waiting or being served by the
shooter-servers as a function of Cy4 for the queuing network model of Section 1.
Also displayed are the values of the total number of targets waiting or being

served at the shooter servers, Ag(100) + A1(100) + Do(100) + D1(100), as a function




of Cg4 and the long run average number of live targets waiting or being served at
time 100, Ao(100) + A1(100), for the deterministic model of Subsection 4.2. The
deterministic model was evaluated using the 4th/5th order Runge-Kutta-
Fehlberg method as implemented in MATLAB. Comparison with Table 3.1
indicates that the deterministic model with effective arrival rate (4.1a) - (4.1d)
and (4.2) gives the same steady state results as the deterministic model of Section
3 for most cases. The effective arrival rate (4.1a) - (4.1d) and (4.2) is preferable
since it will allow thel deterministic model to gracefully decrease if the arrival

rate of targets into the area at time ¢, A(t) tends to 0.

Table 4.1
Targets Waiting or Being Served by the Shooter Servers

Cad M/M/10 Deterministic M/M/10 Deterministic

Average Number of Average Number of
Number of Targets at Numberof  Live Targets

Targets time 300 Live Targets at time 300

0.1 —_ 1163.0 — 662.6

0.2 —_ 572.3 —_ 335.2

0.3 - 653 61.8 39.8 37.7

04 16.9 15.7 11.1 10.3

0.5 11.8 10.8 8.2 7.6

0.6 9.6 . 9.0 7.2 6.7

0.7 8.4 7.9 6.7 6.4

0.8 7.6 7.3 6.5 6.2

0.9 7.0 6.7 6.3 6.1

1.0 6.4 6.3 6.2 6.1

— queuing model is saturated
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5. Summary

The present paper finds the explicit long-run stochastic behavior for a
scenario that envisions targets (Red assets) entering a region, being detected and
targeted. The surveillance rate, probability of correct classification, kill
probability, and BDA capabilities are all bounded, so targeting is conducted in a
realistic environment of imperfect and uncertain sensor-shooter system
performances. Such models permit quick investigation of tradeoffs in system
element capabilities. The explicit stochastic representation provides insights into
the ultimate variabilities and uncertainties encountered when detection,
classification, and BDA are collectively or individually mediocre to poor. Such
conditions can be induced by effects that are not explicitly modeled here, such as
Red use of low-value decoys and sophisticated “play dead” tactics by live assets

that have received plausible (Blue) fire.
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